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Fitting non-linear data

Multi-linear models can fit large datasets with many 
predictors. But the relationship between predictor and target 
isn’t always linear. 
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We want a model: 
𝑦 = 𝑓! 𝑥

Where 𝑓is a non-linear 
function and 𝛽 is a 
vector of the parameters 
of 𝑓. 
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Polynomial Regression

The simplest non-linear model we can consider, for a response Y and a 
predictor X, is a polynomial model of degree M,

𝑦 = 𝛽" + 𝛽#𝑥 + 𝛽$𝑥$ +⋯+ 𝛽%𝑥%

Just as in the case of linear regression with cross terms, polynomial
regression is a special case of linear regression - we treat each 𝑥! as a 
separate predictor. Thus, we can write the design matrix as: 
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Polynomial Regression

This looks a lot like multi-linear regression where the predictors are 
powers of x! 
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Multi-Regression
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Model Training

Give a dataset 𝑥", 𝑦" , 𝑥#, 𝑦# , … , 𝑥$, 𝑦$ , to find the optimal 
polynomial model: 

𝑦 = 𝛽% + 𝛽"𝑥 + 𝛽#𝑥# +⋯+ 𝛽&𝑥&

1. We transform the data by adding new predictors: 

)𝑥 = [1, )𝑥", )𝑥#, … , )𝑥&]

where )𝑥' = 𝑥'

2. We find the parameter by minimizing the MSE using vector calculus 
yields, as in multi-linear regression
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(𝜷 = *𝑿𝑻 *𝑿
'𝟏 *𝑿𝑻𝒚

We can generate (𝑥 by calling:

sklearn.preprocessing.Poly
nomialFeatures(degree=?)

sklearn.linear_model.Linea
rRegression.fit()

We can also perform multi-polynomial 
regression in the same way
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Polynomial Regression (cont)
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Fitting a polynomial model requires choosing a degree.

Underfitting: when the degree is 
too low, the model cannot fit the 
trend.

We want a model that fits the 
trend and ignores the noise.

Overfitting: when the degree is 
too high, the model fits all the 
noisy data points. 

Degree 1 Degree 2 Degree 50
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Feature Scaling

Do we need to scale out features for polynomial regression? 

Linear regression, 𝑌 = 𝑋𝛽, is invariant under scaling. If 𝑋 is multiplied by some number 

𝜆, then 𝛽 will be scaled by  
!
"

and MSE will be identical. 

However, if the range of 𝑋 is small or large, then we run into troubles. Consider a 
polynomial degree of 20 and the maximum or minimum value of any predictor is large 
or small. Those numbers to the 20th power will be problematic. 

It is always a good idea to scale 𝑋 when considering polynomial regression: 

𝑋#$%& =
𝑋 − 0𝑋
𝜎'

Note: sklearn’s StandardScaler() can do this. 
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High degree of polynomial  
leads to OVERFITTING!
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Evaluation: Training Error  

Just because we found the model that minimizes the squared error it 
doesn’t mean that it’s a good model. We investigate the R2 but also: 
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The MSE is high due to noise in the 
data.

The MSE is high in all four models, but 
the models are not equal.
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Evaluation: Test Error

We need to evaluate the fitted model on new data, data that the model 
did not train on, the test data.
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The training MSE 
here is 2.0 where the 
test MSE is 12.3. 

The training data 
contains a strange 
point – an outlier –
which confuses the 
model. 

Fitting to meaningless patterns in the training is called overfitting.
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Evaluation: Model Interpretation 

For linear models it’s important to interpret the parameters 
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The MSE of this model is very small. But the 
slope is -0.05. That means the larger the 
budget the less the sales.

The MSE is very small, but the intercept is -0.5 
which means that for very small budget we will 
have negative sales.
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